Acta Cryst. (1998). C54, 1944-1945

A Dinitrobenzoate Derivative of an α-Methoxy- γ-hydroxysilane

Guy Baudoux, ${ }^{\text {a }}$ Bernadette Norberg, ${ }^{\text {" Jamal }}$ Bousbaa, ${ }^{b}$ Alain Krief ${ }^{b}$ and Guy Evrard ${ }^{a}$
${ }^{a}$ Laboratoire de Chimie Moléculaire Structurale, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles, 61, B-5000 Namur, Belgium, and ${ }^{b}$ Laboratoire de Chimie Organique de Synthèse, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles, 61, B-5000 Namur, Belgium. E-mail: guy.baudoux@fundp.ac.be

(Received 29 January 1998: accepted 25 March 1998)

Abstract

The structure of $\left(2 S^{*}, 4 S^{*}\right)$-4-methoxy-4-phenyl-4-(tri-methylsilyl)-2-butyl 3,5 -dinitrobenzoate, $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}$, is presented and discussed. The compound was synthesized by a stereoselective [1-4] retro-Brook reaction, followed by acylation using 3,5-dinitrobenzoyl chloride. The Si- $\mathrm{O}_{\text {carboxy }}$ chain adopts a sterically hindered conformation resembling a five-membered ring.

Comment

We have recently studied the configurational stability of benzyllithiums using, as probes, γ-silyloxybenzyllithiums produced by cleavage of γ-silyloxybenzylselenides (Bousbaa et al., 1997). The stereoisomers of compound (1) bearing a methyl and a phenyl group

(b)
(3)
(a) (i) tert-BuLi, THF, 195 K .2 h : (ii) MeOH, 195 K .
(b) $\mathrm{Cl}(\mathrm{CO}) \mathrm{Ph}\left(\mathrm{NO}_{2}\right)_{2}$. DMAP, pyridine. $293 \mathrm{~K}, 0.25 \mathrm{~h}$.
in 'syn' or 'anti' positions have been reacted, as $1 / 1$ mixtures, with tert-butyllithium, and the product, (2), arising from the $[1-4]$ retro-Brook rearrangement (Simchen \& Pfletschinger, 1976) was obtained as almost a single stereoisomer ($72-76 \%$ diastereomeric excess
in the crude reaction mixture and 94% diastereomeric excess after a first purification). The structure of the 3,5dinitrobenzoate, (3), was established by single-crystal X-ray diffraction analysis and shows unambiguously the syn relationship between the methyl and phenyl groups.

Compound (3) (Fig. 1) has the relative stereochemistry $2 S^{*}, 4 S^{*}$. A striking feature of this structure is the conformation of the chain $\mathrm{Ol}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Si}$, which resembles a five-membered ring. The values of the torsion angles defined by these five atoms (Table 1) correspond fairly well with the ideal sequence of the 'envelope' conformation ($\omega_{1},-\omega_{1}, \omega_{2}, 0 .-\omega_{2}$; Dunitz, 1979) and the distance between the two non-bonded atoms, Ol and Si , is $3.443(1) \AA$. So the molecule, despite its supposed flexibility (due to possible free rotation around the $\mathrm{Ol}-\mathrm{Cl}, \mathrm{Cl}-\mathrm{C} 2$ and $\mathrm{C} 2-\mathrm{C} 3$ bonds), adopts a quite sterically hindered conformation. Examination of the crystal packing shows no clear intermolecular interactions to explain this state.

Fig. 1. The molecular structure of compound (3). Displacement ellipsoids are drawn at the 50% probability level.

Experimental

Compound (2) was synthesized as follows: in a two-necked flask under argon, compound (1) ($346 \mathrm{mg}, 1.00 \mathrm{mmol} ; M_{r}$ 346), as a $1 / 1$ mixture of 'syn' and 'anti' stereoisomers, was dissolved in dry THF (4 ml). The temperature was lowered to 195 K and then tert-butyllithium (0.70 ml of a 1.7 M solution in pentane) was added. The reaction mixture turned red. After 2 h , this colour had disappeared. Methanol $(1 \mathrm{ml})$ was added and the reaction mixture extracted with diethyl ether. The organic phases were washed three times with a saturated solution of aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dried over MgSO_{+}and evaporated under reduced pressure to obtain 250 mg of crude reaction product. This product was purified on chromatographic plates [silica gel. diethyl ether/pentane
eluent ($4: 6 \mathrm{v} / \mathrm{v}$)] to obtain 180 mg (71% yield) of compound (2) ($R_{f} 0.47, M_{r} 236.43$), which is a $97 / 3$ mixture of the 'syn' and 'anti' stereoisomers. Compound (2) is relatively unstable in acid medium. Compound (2) was then used to prepare compound (3). Compound (2) ($176 \mathrm{mg}, 0.75 \mathrm{mmol}$; $M_{r} 236$), as the $97 / 3$ mixture of 'syn' and 'anti' stereoisomers, and 4-dimethylaminopyridine ($8 \mathrm{mg}, 0.067 \mathrm{mmol} ; M_{r}$ 122) were dissolved in 2 ml of pyridine in a round-bottomed flask. 3,5-Dinitrobenzoyl chloride (DMAP) ($170 \mathrm{mg}, 0.74 \mathrm{mmol} ; M_{r}$ 230) was added under agitation in one shot and the reaction mixture left under agitation for 15 min , after which time it was extracted with diethyl ether and the organic phases washed three times with water, dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ and the solvent evaporated under reduced pressure to give the crude product (350 mg). This mixture, purified on chromatographic plates [silica gel, diethyl ether/pentane eluent ($2: 8 \mathrm{v} / \mathrm{v}$)], led to a solid product ($250 \mathrm{mg} ; R_{f} 0.46$; m.p. $378-380 \mathrm{~K}$). This product, recrystallized from a hot diethyl ether/pentane mixture, led to 200 mg (59.7% yield) of pure 'syn' compound (3) $\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si} ; M_{r} 446.54\right.$; m.p. 393-394 K; analysis found: C $56.32, \mathrm{H} 5.81, \mathrm{~N} 6.24 \%$; calculated: C $56.49, \mathrm{H}$ 5.87, N 6.27%).

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}$
$M_{r}=446.53$
Monoclinic
C2/c
$a=32.421$ (3) \AA
$b=6.235(1) \AA$
$c=22.646(1) \AA$
$\beta=91.333(7)^{\circ}$ 。
$V=4576.5(9) \AA^{3}$
$Z=8$
$D_{\mathrm{r}}=1.296 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
ψ scan (NRCVAX; Gabe et al., 1989)
$T_{\text {min }}=0.774, T_{\text {max }}=0.879$
5404 measured reflections
4450 independent reflections

Refinement

```
Refinement on \(F^{2}\)
\(R(F)=0.040\)
\(w R\left(F^{2}\right)=0.122\)
\(S=1.110\)
4450 reflections
281 parameters
H -atom parameters
    constrained
\(w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0652 P)^{2}\right.\)
        \(+1.6345 P]\)
    where \(P=\left(F_{\sigma}^{2}+2 F_{i}^{2}\right) / 3\)
```


$\mathrm{Cu} K \alpha$ radiation

$\lambda=1.54178 \AA$
Cell parameters from 25 reflections
$\theta=40-50^{\circ}$
$\mu=1.285 \mathrm{~mm}^{-1}$
$T=292(2) \mathrm{K}$
Parallelepiped
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$
Transparent, colourless

$$
\begin{aligned}
& \quad I>2 \sigma(I) \\
& R_{\text {int }}=0.037 \\
& \theta_{\max }=71.81^{\circ} \\
& h=-39 \rightarrow 39 \\
& k=0 \rightarrow 7 \\
& l=0 \rightarrow 27 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \mathrm{~min} \\
& \quad \text { intensity decay: } 4.0 \%
\end{aligned}
$$

3734 reflections with
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.249 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.246 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997a)
Extinction coefficient: 0.00080 (7)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left({ }^{\circ},^{\circ}\right)$
$\mathrm{Si}-\mathrm{Ol}$
3.443 (1)
$\begin{array}{lrlr}\mathrm{OI}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3 & 8.3 .9(2) & \mathrm{C} 3-\mathrm{Si}-\mathrm{OI}-\mathrm{Cl} & 9.78(9) \\ \mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1 & -72.8(2) & \mathrm{Si}-\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 2 & -38.8(1)\end{array}$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Si}-\mathrm{Ol} \quad 24.6(1)$
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992). Cell refinement: CAD-4 EXPRESS. Data reduction: NRCVAX (Gabe et al., 1989). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: PLATON (Spek, 1990). Software used to prepare material for publication: SHELXL97.

The authors thank IBM Belgium, the Facultés Universitaires Notre-Dame de la Paix, and the FNRS, for the use of the Scientific Computing Facility. The authors thank Johan Wouters for help in collecting the data.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1185). Services for accessing these data are described at the back of the journal.

References

Bousbaa, J., Ooms, F. \& Krief, A. (1997). Tetrahedron Lett. 38, 76257628.

Dunitz, J. (1979). X-ray Analysis and the Structure of Organic Molecules, p. 429. Ithaca: Cornell University Press.
Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius. Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Cristal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Cristal Structures. University of Götingen, Germany.
Simchen, G. \& Pfletschinger, J. (1976). Angen: Chem. Int. Ed. Engl. 15, 428-429.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

Acta Cryst. (1998). C54, 1945-1948

1,4-Dihydro-1-methyl-4-nitriminopyridine Dihydrate

Maciej Bujak, Krzysztof Ejsmont, Janusz Kyziot, Zdzisław Daszkiewicz and Jacek Zaleski
Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland. E-mail: zaleski@uni.opole.pl
(Received 10 March 1998; accepted 15 June 1998)

Abstract

Molecules of the title compound, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2} .2 \mathrm{H}_{2} \mathrm{O}$, are almost planar with the NNO_{2} nitrimino group twisted $8(1)^{\circ}$ out of the plane of the pyridine ring.

